PHOTOLUMINESCENCE STUDY OF B-TRION IN CVD GROWN MoS₂ MONOLAYERS

Reelika Kaupmees¹, Jüri Krustok^{1,2}

¹Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

²Division of Physics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia e-mail: reelika.kaupmees@ttu.ee

Two-dimensional semiconductors, namely, transition metal dichalcogenides (TMD) like MoS₂ have interesting physical properties, such as direct bandgap and very high exciton binding energy. The value of spin-orbit valence band splitting in MoS₂ is 146 eV [1]. Due to spin-orbit splitting, the

monolayer of MoS_2 has two excitonic bands named A and B bands. The monolayer of MoS_2 has electrically neutral quasiparticles – excitons and if additional charges (electrons or holes) are present either negative or positive charged excitons – trions [2].

Chemical vapour deposition (CVD) method was used to synthesize MoS_2 monolayers on Si/SiO_2 substrate. Different growth regimes were used and the most optimal regime gave MoS_2 monolayers with size

Fig. 1 PL spectra of MoS_2 monolayer at laser intensities 420 μW and 7000 μW .

~100 μ m. These monolayers were studied using non-resonant and resonant Raman scattering and laser dependent photoluminescence (PL). PL spectra show A and B bands and a defect peak X_D at lower energies (Fig. 1). Defect peak X_D is more pronounced at lower laser intensities. The A band has a peak maximum at around 1.78 eV, which is at lower energy compared to mechanically exfoliated MoS_2 monolayers. This shift is caused by a tensile strain in CVD grown MoS_2 monolayers. By increasing the laser intensity, the B band maximum shifted toward lower energy. This behaviour of the B band has not been detected before and this indicates that the B band consists of the B exciton peak and the B^+ trion peak with an energy difference about 25 meV.

References

- [1] A. Ramasubramaniam, 2012, Phys. Rev. B Condens. Matter Mater. Phys., 86, 1–6.
- [2] M. Drüppel, T. Deilmann, P. Krüger, and M. Rohlfing, 2017, Nat. Commun., 8, 2117.

