EFFECT OF ALKALI IONS (Na⁺, K⁺, Cs⁺) ON REACTION MECHANISM OF CZTS NANO-PARTICLES SYNTHESIS Suresh Kumar, Mare Altosaar, Maarja Grossberg, Valdek Mikli Department of Materials and Environmental Technology, Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, Estonia ## sureshkumarnara@gmail.com The control of morphology, elemental composition and phase composition of Cu_2ZnSnS_4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥ 280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na⁺, K⁺ and Cs⁺) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na⁺ and K⁺ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μ m) and large single crystals (1 μ m - 4 μ m). The presence of Cs⁺ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.