A MODEL OF CLOSED EQUILIBRIUM SYSTEMS H2O-CO2-CaCO3-NaH2PO4 Oleg Artemchuk (presenting author), Ergo Rikmann, Ivar Zekker, Toomas Tenno Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia artemchuki@gmail.com The aqueous systems containing carbonaceous and phosphorous species are present in many waste waters of various types and origin. Limestone bedrock, which consists mainly of CaCO₃, affects waste- and reject water treatment. Variation in the concentration of dissolved carbon dioxide [CO₂]_W causes changes in the solubility of CaCO₃ and pH in an equilibrium system. The system H₂O-(CO₂)_W-CaCO₃ was taken as the basis for modelling the closed system H₂O-(CO₂)_W-CaCO₃-NaH₂PO₄ [1]. The distribution of ions and molecules in the closed system H₂O-(CO₂)_W-CaCO₃-NaH₂PO₄ is described in terms of a structural scheme. The developed model of the equilibrium closed system H_2O – $(CO_2)_{W0}$ – $CaCO_3$ – NaH_2PO_4 can be used to determine concentrations of all components in the water phase over a wide range of natural and industrial conditions. The model allows one to assess the impact of Fig.1 Structural scheme of the equilibrium distribution in the final closed system of $H_2O-[CO_2]_W-CaCO_3-NaH_2PO_4$, where K_h is the hydration constant of CO_2 , K_{al} the true acid dissociation constant of H_2CO_3 , K_{a2} the acid dissociation constant of HCO_3 , K_{SP} is the solubility product constant of $CaCO_3$, K_W the ion-product constant of water, and $K_{a2,p}$ the dissociation constant of H_2PO_4 ions, $K_{a3,p}$ the dissociation constant of HPO_4 . anthropogenic processes on the environment and could be applied by environmental technologists in water and wastewater treatment. ## References 1. Tenno, T., Uiga, K., Mashirin, A., Zekker, I., and Rikmann, E. Modelling closed equilibrium systems of H₂O-dissolved CO₂-solid CaCO₃. *J. Phys. Chem. A.*, 2017, **121**, 3094–3100.