CHEMICAL VAPOUR DEPOSITION OF WS2 MONOLAYERS Reelika Kaupmees¹, Maarja Grossberg¹, Jüri Krustok^{1,2} ¹Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia ²Division of Physics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia e-mail: reelika.kaupmees@taltech.ee Transition metal dichalcogenides (TMD) like WS_2 have attracted considerable attention because of their interesting physical properties and potential applications in various opto-electronic devices. Monolayer WS_2 has two excitonic bands named A and B bands due to spin-orbit splitting. The value of spin-orbit splitting of the valence band in WS₂ is 425 meV. WS₂ monolayers were grown by chemical vapour deposition (CVD) method on a Si/SiO₂ substrate using WO₃ and S precursors. In two-zone furnace S zone was at 200 °C and WO₃ zone was at 850 °C. N₂ and H₂ (9%) mixed gas was used as a carrier gas and the Si/SiO₂ was positioned face-down next to WO₃ precursor. This growth process produced uniform mostly triangular shaped WS₂ monolayer domains, although several Fig. 1 CVD grown WS2 monolayer different shapes sometimes appeared (Fig.1). The size of these areas ranges from couple of micrometres up to several tens of micrometres. Influence of the zone temperatures, gas flow and gas percentages on the growth of WS₂ monolayers was studied and further optimization to get bigger monolayer areas is in progress. WS₂ monolayers were characterized using Raman scattering, room-temperature photoluminescence (PL) and reflectance contrast (RC) analysis. PL spectra show A band with high intensity, which indicates good quality monolayers. The A band peak maximum varies for different WS₂ monolayer domains in the range of 1.94 - 1.98 eV, showing different tensile strain values in CVD grown WS₂ monolayers. The uniformity of single WS₂ monolayer domains was studied using PL images of the integrated peak intensity.