STUDIES OF NOVEL LOW COST ABSORBERS CUSBS2 AND CUSBSE2 FOR SOLAR CELLS

Aleksei Penezko¹, Maarja Grossberg¹, Marit Kauk-Kuusik¹

¹Department of Material and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia e-mail: aleksei.penezko@taltech.ee

The aim of this work was to synthesize high quality photovoltaic absorber materials CuSbS₂ and CuSbSe₂ in the form of polycrystalline powders and to analyse their structural and optoelectronic properties depending on the synthesis conditions. Different precursor materials were used including binaries Cu₂S/Cu₂Se and Sb₂S₃/Sb₂Se₃, or elementary Cu, Sb, and S/Se that were ground, mixed

and sealed into quartz ampoules. The synthesis temperature was varied in the range from 450°C to 900°C. It is known from literature that the melting point for CuSbS₂ is 551°C [1] and for CuSbSe₂ 490°C [2]. Synthesis conditions for the formation of single phase CuSbS₂ and CuSbSe₂ were determined.

The synthesized powders were investigated using Raman scattering, X-ray diffraction, Energy Dispersive Spectroscopy and temperature dependent photoluminescence spectroscopy (PL).

It was found that the low-temperature (T=10K) PL spectra of both, CuSbS₂ and CuSbSe₂, consist of

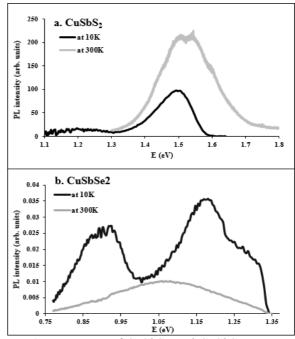


Fig. 1 PL spectra of CuSbS₂ and CuSbSe₂ at different temperatures.

two emission bands - edge emission and deep PL emission. Temperature and laser power dependent PL measurements were performed to determine the dominating radiative recombination mechanisms in the studied materials.

References

- 1. B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, 2014, Chem. Mater., 26 (10), pp 3135–3143
- 2. B.Korzun, V.Sobol, M.Rusu, R.Savizky, 2016, Mater. Res. Soc. Symp. Proc. Vol. 1735

