THZ SPECTROSCOPY OF THE QUANTUM CRITICALITY IN A TRANSVERSE FIELD ISING CHAIN COMPOUND CoNb₂O₆

<u>Johan Viirok¹ (presenting author)</u>, Dan Hüvonen¹, Toomas Rõõm¹, Urmas Nagel¹, Jason Krizan², Robert Cava², Christopher Morris³, Seyed M. Koohpayeh³, Tyrel McQueen³, Peter Armitage³

> ¹National Institute of Chemical Physics and Biophysics, Tallinn, Estonia ²Princeton University, Princeton, NJ, United States ³The Johns Hopkins University, Baltimore, MD, United States <u>e-mail</u> of presenting author: johan.viirok@kbfi.ee

The one-dimensional Ising chain in a transverse magnetic field is an ideal example of a system that undergoes an order-disorder transition at a quantum critical point. The columbite $CoNb_2O_6$ has been proposed as a good model system of the transverse field Ising chain allowing us to investigate the finite-temperature effects on quantum fluctuations near it's quantum critical point [1]. We studied the Ising chain material $CoNb_2O_6$ using THz spectroscopy in high magnetic fields up to 17 T and down to 0.1 K. The system shows a softening of the spectrum as one approaches the quantum critical point at about 5.5 T from the ferromagnetic side. This collapse of energy scales is compared to predictions for quantum criticality in the 1D Ising model tuned by transverse field.

References

1. Coldea, R *et al.*, "Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry", Science, **327**, 5962, pp. 177-180, 2010

