CHARACTERIZATION OF TETRAHEDRITE CU₁₀CD₂SB₄S₁₃ MONOGRAIN MATERIALS GROWN IN MOLTEN CDI₂ AND LII

Fairouz Ghisani, Kristi Timmo, Mare Altosaar

Department of Materials and Environmental Technology, Tallinn University of Technology e-mail of presenting author: fairouz.ghisani@taltech.ee

Cd-substituted tetrahedrite Cu₁₀Cd₂Sb₄S₁₃ (TH-Cd) monograin powders (MGPs) was performed by the molten salt synthesis-growth method using two different fluxes. The influence of nature of the used flux salts on the elemental and phase composition of TH-Cd MGP particles, on their size distribution, morphology, as well as on the rate of particles' agglomeration, was studied. The Cu₁₀Cd₂Sb₄S₁₃ powder materials were synthesized from CdS (5N) and Cu₂S (5N) and Sb₂S₃ (5N) by isothermal recrystallization method in cadmium iodide (CdI₂) and lithium iodide (LiI) at 495 °C for 336 hours. The mass ratio of precursors to flux salt m_{TH-Cd}/m_{flux} was kept 1 : 1. More details about the MGPs growth of TH compound could be found in [1][2].

The X-ray diffraction data of the materials indicated that mainly single phase of tetrahedrite $Cu_{10}Cd_2Sb_4S_{13}$ compound was formed in both flux salts. XRD pattern of TH-Cd crystals grown in LiI revealed a shift of all diffraction peaks, lower CdS content and a smaller lattice parameter values in comparison with those formed in CdI_2 ($Cu_{10}Cd_2Sb_4S_{13}$ synthesized in LiI: a=b=c=10.509 Å and in CdI_2 : a=b=c=10.512 Å). Energy dispersive X-ray spectroscopy revealed stoichiometric composition of $Cu_{10}Cd_2Sb_4S_{13}$ crystals grown in CdI_2 and Cu-poor grown in LiI. Images of scanning electron microscope showed different morphology of TH-Cd crystals formed in CdI_2 , and LiI. The produced MGPs were used as an absorber material in MGL solar cells with a structure of $ZnO/CdS/Cu_{10}Cd_2Sb_4S_{13}$ /graphite. The MGL solar cell, based on TH-Cd grown in LiI media showed higher parameters (η of 0.79% was achieved) than the one with TH-Cd grown in CdI_2 (η of 0.13%). Based on these results, we can conclude that Li^+ from the molten flux (LiI) incorporates into the $Cu_{10}Cd_2Sb_4S_{13}$ crystals structure and most probably partly replacing Cu^+ sites in the lattice forming Cu_{10} -x $Li_xCd_2Sb_4S_{13}$ solid solution.

References

- 1. F.Ghisani, K.Timmo, M.Altosaar, , J.Raudoja, V.Mikli, M.Pilvet, M.Kauk-kuusik, and M.Grossberg, 2020, *Mater. Sci. Semicond. Process.*, 110, 104973.
- 2. J.Krustok, T. Raadik, , R.Kaupmees, F.Ghisani, K.Timmo, M.Altosaar, V.Mikli, and M.Grossberg, 2020, *J. Phys. D. Appl. Phys.*

