TRANSPORT PROPERTIES OF H₂ CONFINED IN CARBIDE-DERIVED CARBONS WITH DIFFERENT PORE SHAPES AND SIZES

<u>Riinu Härmas¹</u>, Rasmus Palm¹, Margarita Russina², Heisi Kurig¹, Veronika Grzimek², Eneli Härk², Miriam Koppel¹, Indrek Tallo¹, Maarja Paalo¹, Ove Oll¹, Jan Embs³, Enn Lust¹

¹Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia ²Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

³Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland e-mail of presenting author: riinu.harmas@ut.ee

The structural variety, high specific surface area, large pore volume and relatively low cost make microporous carbons a promising candidate as adsorbents for hydrogen storage. Hydrogen adsorption in highly porous carbon with well-defined pores, with three different shapes [1], and different sizes ranging from < 1 nm to 30 nm is investigated. Using a combined approach of volumetric gas adsorption method and *in situ* quasi-elastic neutron scattering method the relationship between final macroscopic intake properties, details of the local adsorbent structure and

the molecular behaviour of confined hydrogen is established. It is shown that pores of spherical and cylindrical shape strongly limit the diffusion of H₂, (Fig. 1) and thus, enhance the H₂ storage capability of carbons with well-tailored pore structure. In mesoporous carbide-derived carbon, the formation of a hydrogen layer with reduced mobility close to the pore walls is observed. With the increase in the amount of confined hydrogen and the occupation of the centre pore area, the mobility of confined H₂

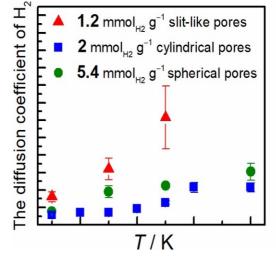


Fig. 1

increases in a jump-like fashion. Surprisingly, the increase of hydrogen diffusion is also observed at higher hydrogen loadings, indicating that cooperative H₂–H₂ interactions might play a role.

References

1. Kurig, H.; Russina, M.; Tallo, I.; Siebenbürger, M.; Romann, T.; Lust, E. Carbon 2016, 100, 617-624

