RESISTIVE SWITCHING IN MIXED ALUMINUM OXIDE AND ZIRCONIUM OXIDE THIN FILMS

Joonas Merisalu¹, Taivo Jõgiaas, Aarne Kasikov, Aile Tamm, Jaan Aarik, Kaupo Kukli

¹Institute of Physics, University of Tartu, W.Ostwaldi 1, 50411 Tartu, Estonia
e-mail of presenting author: joonas.merisalu@ut.ee

In the search for well-performing resistive switching (RS) media, mixing different dielectric

material layers is widely practiced, taking advantage of versatile possibilities of atomic layer deposition (ALD) technology. There are some attractive studies on RS of ZrO₂ as the host dielectric oxide [1,2], and few papers have reported RS of ALD-grown ZrO₂:Al₂O₃ mixtures [3]. In the present study, ZrO₂:Al₂O₃ films were grown to thicknesses in the range of 10-15 nm of by ALD using Al(CH₃)₃, ZrCl₄ and H₂O as precursors at 300 °C, whereas earlier the AlCl₃, as a precursor less prone to thermal decomposition has been applied in the processes [3]. In the present study, the ZrO₂:Al₂O₃ cycle ratios

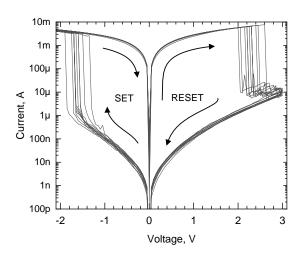


Fig. 1 Resistive switching current-voltage characteristic of a ZrO₂:Al₂O₃ film

were, e.g., 24:1 and 4:1 with Al:Zr cation ratios varying between 0.04 and 0.4. The films demonstrated multiple clockwise bipolar RS with low to high resistivity window, remarkably, over five orders of magnitude in the conductivity scale (Fig. 1), clearly exceeding that observed earlier [3].]. Characteristics of some samples referred to multilevel RS. The forming voltages, though, were rather high ranging from 4 to 6 V. Interestingly the forming took place under positive voltage bias which is more common for counterclockwise RS. The effects of cycle ratios and sequencing on the crystalline structure, switching polarity and low to high resistivity ratios will be discussed.

References

- 1. Y. Abbas et al. Rapid thermal annealing on the atomic layer deposited zirconia thin film to enhance resistive switching characteristics, J. Mater. Sci.: Mater. Electron. 31 (2020) 903. DOI: 10.1007/s10854-019-02598-x
- 2. I. Kärkkänen et al. Study of atomic layer deposited ZrO₂ and ZrO₂/TiO₂ films for resistive switching application, Phys. Status Solidi A 211 (2014) 301. DOI 10.1002/pssa.201330034
- H. Castán et al. Study of the influence of the dielectric composition of Al/Ti/ZrO₂:Al₂O₃/TiN/Si/Al structures on the resistive switching behavior for memory applications, ECS Trans. 85 (2018) 143. DOI: 10.1149/08508.0143ecst

