³¹P, ^{65,63}Cu NMR AND MAGNETIC SUSCEPTIBILITY STUDY OF ISOSTRUCTURAL COMPOUNDS A(BO)Cu₄(PO₄)₄ (AB = PTi, SrTi, KNb)

Riho Rästa^{1*}, Ivo Heinmaa¹, Kenta Kimura², Tsuyoshi Kimura², Raivo Stern¹

Magnetic environments of the tetragonal compounds A(BO)Cu₄(PO₄)₄, with (AB = PTi, SrTi, KNb) are investigated with 31 P, 65,63 Cu nuclear magnetic resonance (NMR) techniques. The compounds exhibit a phase transition at temperatures below $T_N = 10 K$ (Fig. 1), where symmetry-based phenomena, like the magnetoelectric (ME) effect, are easy to arise. The 31 P magnetic shift K of

PTCPO [1] shows a clear splitting at the Néel temperature $T_N = 6.8 \, K$, where the resonance lines brake into two in case of the external magnetic field B along the b- or c-axis. A phase diagram of magnetic susceptibility $\chi(T)$ at different magnetic fields were measured. The relation of K vs χ yielded hyperfine field values $H_{hf}^c = 6.77 \, kOe/\mu_B$ for B||c and $H_{hf}^b = 6.19 \, kOe/\mu_B$ with B||b. KNbCPO is the first of the compounds that have the B element switched. This

Fig. 1 Temperature dependance of magnetic susceptibility in ABCPO [1]

changes the material into non-magnetic. The Knight shift and susceptibility show a broad maximum around $T_m=30~K$ and surprisingly the compound still exhibits a shift at the Néel temperature $T_N=6.8~K$. Below $T_N=6.2~K$ PTCPO splits into two different resonance lines, which indicate a phase transition into a magnetically ordered state, where as KNbCPO exhibits only a change from decreasing shift into increasing. From the 65,63 Cu zero field NMR measurements we saw that the local magnetic fields in the magnetic Cu²⁺ ions of SrTCPO and PTCPO were $B_{loc}=14.51~T$ and $B_{loc}=14.90~T$ respectively. The 31 P NMR with rotating single crystal were performed for PTCPO at room temperature and in the ordered state region at $T_N=4.2~K$. A clear difference is observed from the magnetic fields in BTCPO [2].

References

- 1. K.Kimura, S.Kimura, T.Kimura, 2019, J. Phys. Soc. Jpn. 62, 772.
- 2. T.Hayashida, K.Kimura, D.Urushihara, 2021, J. Am. Chem. Soc., 143, 3638-3646.

¹ National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia ² Department of Advanced Material Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan *e-mail: riho.rasta@kbfi.ee