FLUORESCENCE OF Nd³⁺ OPTICAL CENTERS CLOSE TO CUBIC SYMMETRY IN A CALCIUM FLUORIDE CRYSTAL CO-DOPED WITH Na⁺ E. Vinogradova¹ (presenting author), L. Dolgov¹, V.A. Konyushkin², E.O. Orlovskaya², E. A. Vagapova^{1,2}, A. Treshchalov¹, V. Peet¹, V. Hizhnyakov¹, and Yu.V. Orlovskii^{1,2} ¹Institute of Physics, University of Tartu, W. Ostwaldi Street 1, Tartu 50411, Estonia ²Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, Moscow 119991, Russia e-mail of presenting author: elena.vinogradova@ut.ee It was shown by the EPR method that at a very low concentration of the Nd³⁺ ion in the Nd³⁺: CaF₂ crystal, highly symmetric cubic centers with the O_h symmetry are formed [1, 2]. In the present study, the optical centers of the Nd³⁺ ion with an anomalously long radiative lifetime $\tau_R = 13.6$ ms of the ${}^4F_{3/2}(1)$ crystal-field (CF) level in the Nd³⁺ (0.05 at.%): Na⁺ (0.2 at.%): CaF₂ single crystal at T = 7 K were detected for the first time by the method of time-resolved site-selective fluorescence laser spectroscopy. New optical centers exhibit inhomogeneous splitting and can be attributed to nearly cubic sites with symmetry close to O_h. Also numerous new Nd³⁺ optical sites in the Nd³⁺ (0.03 at.%): CaF₂ and Nd³⁺ (0.05 at.%): Na⁺ (0.2 at.%): CaF₂ crystals at T=7 K with $\tau_R=240~\mu s-8.5$ ms of the $^4F_{3/2}(1)$ CF level of Nd³⁺ were detected in a shorter wavelength spectral range compared to the nearly cubic sites. We found that the optical sites with $\tau_R=8.5$ ms in the Nd³⁺ (0.05 at.%): Na⁺ (0.2 at.%): CaF₂ crystals have C_{2v} symmetry, when the Na⁺ ion compensates for the excess of the charge. Since optical sites with C_{4v} symmetry have $\tau_R=1.4$ ms, it means, that for optical sites without a center of inversion, the radiative lifetime of the excited state at sites with higher symmetry can be almost an order of magnitude shorter than at sites with lower symmetry. This result was explained with the Judd-Ofelt approach by the different distance between the Nd³⁺ ion and the Na⁺ ion. ## References - 1. G. Vincow, W. Low, Paramagnetic resonance spectra of f³ ions in a cubic site, Phys. Rev. 122(5) (1961) 1390- - 2. N. Kask, L. Kornienko, M. Fakir, Electronic paramagnetic resonance and spin-lattice relaxation of Nd³⁺ ions in monocrystals of CaF₂ (rus), Phys. Solid State 6(2) (1964) 549-553.